Convertir kilogramme-force/cm² en newton par millimètre carré
Veuillez fournir les valeurs ci-dessous pour convertir kilogramme-force/cm² [kgf/cm^2] en newton par millimètre carré [N/mm^2], ou Convertir newton par millimètre carré en kilogramme-force/cm².
Comment convertir Kilogramme-Force/cm² en Newton Par Millimètre Carré
1 kgf/cm^2 = 0.0980665 N/mm^2
Exemple: convertir 15 kgf/cm^2 en N/mm^2:
15 kgf/cm^2 = 15 × 0.0980665 N/mm^2 = 1.4709975 N/mm^2
Kilogramme-Force/cm² en Newton Par Millimètre Carré Tableau de conversion
kilogramme-force/cm² | newton par millimètre carré |
---|
Kilogramme-Force/cm²
Kilogramme-force par centimètre carré (kgf/cm²) est une unité de pression représentant la force d'un kilogramme-force appliquée sur une surface d'un centimètre carré.
Histoire/Origine
L'unité provient de l'utilisation du kilogramme-force, une unité de force non-SI basée sur la force gravitationnelle sur un kilogramme, et était couramment utilisée en ingénierie et en physique avant l'adoption généralisée du Pascal. Elle était particulièrement répandue dans les pays utilisant le système métrique pour les mesures de pression.
Utilisation actuelle
Bien que largement remplacé par le Pascal (Pa) dans les contextes scientifiques, le kgf/cm² est encore utilisé dans certaines industries telles que l'hydraulique, la pneumatique et l'ingénierie pour exprimer la pression, notamment dans les régions ou applications où les unités traditionnelles persistent.
Newton Par Millimètre Carré
Le newton par millimètre carré (N/mm²) est une unité de pression ou de contrainte, représentant la force d'un newton appliquée sur une surface d'un millimètre carré.
Histoire/Origine
L'unité dérive de l'unité de base SI newton pour la force et du millimètre pour la surface, couramment utilisée en ingénierie et en science des matériaux pour mesurer la contrainte et la pression. Elle est en usage depuis l'adoption du système SI, avec une application accrue dans les domaines nécessitant une mesure précise des hautes pressions.
Utilisation actuelle
N/mm² est largement utilisé en ingénierie, en science des matériaux et en construction pour spécifier la résistance des matériaux, la contrainte et les niveaux de pression, notamment dans les contextes où une grande précision est requise, comme dans la spécification de la résistance à la traction et des pressions admissibles.